Mining Association Rules from Clinical Databases: An Intelligent Diagnostic Process in Healthcare
نویسندگان
چکیده
Data mining is the process of discovering interesting knowledge, such as patterns, associations, changes, anomalies and significant structures, from large amounts of data stored in databases, data warehouses, or other information repositories. Mining Associations is one of the techniques involved in the process mentioned above and used in this paper. Association is the discovery of association relationships or correlations among a set of items. The algorithm that was implemented is a basic algorithm for mining association rules, known as a priori. In Healthcare, association rules are considered to be quite useful as they offer the possibility to conduct intelligent diagnosis and extract invaluable information and build important knowledge bases quickly and automatically. The problem of identifying new, unexpected and interesting patterns in medical databases in general, and diabetic data repositories in specific, is considered in this paper. We have applied the a priori algorithm to a database containing records of diabetic patients and attempted to extract association rules from the stored real parameters. The results indicate that the methodology followed may be of good value to the diagnostic procedure, especially when large data volumes are involved. The followed process and the implemented system offer an efficient and effective tool in the management of diabetes. Their clinical relevance and utility await the results of prospective clinical studies currently under investigation.
منابع مشابه
Introducing an algorithm for use to hide sensitive association rules through perturb technique
Due to the rapid growth of data mining technology, obtaining private data on users through this technology becomes easier. Association Rules Mining is one of the data mining techniques to extract useful patterns in the form of association rules. One of the main problems in applying this technique on databases is the disclosure of sensitive data by endangering security and privacy. Hiding the as...
متن کاملIntelligent Mining Association Rules
Association rules is one of data mining methods for discovering knowledge from large amounts of data in databases. In this paper, we propose an intelligent method for discovering association rules, called IMAR. IMAR is designed through three main phases, i.e., preprocessing, processing and post processing. It has been experimented using three domain data sets, i.e., Australian Credit Card (ACC)...
متن کاملA Distributed Algorithm for Mining Fuzzy Association Rules
Data mining, also known as knowledge discovery in databases, is the process of discovery potentially useful, hidden knowledge or relations among data from large databases. An important topic in data mining research is concerned with the discovery of association rules. The majority of databases are distributed nowadays. In this paper is presented an algorithm for mining fuzzy association rules f...
متن کاملMining the Banking Customer Behavior Using Clustering and Association Rules Methods
The unprecedented growth of competition in the banking technology has raised the importance of retaining current customers and acquires new customers so that is important analyzing Customer behavior, which is base on bank databases. Analyzing bank databases for analyzing customer behavior is difficult since bank databases are multi-dimensional, comprised of monthly account records and daily t...
متن کاملSummarization of Association Rules in Multi-tier Granule Mining
It is a big challenge to find useful associations in databases for user specific needs. The essential issue is how to provide efficient methods for describing meaningful associations and pruning false discoveries or meaningless ones. One major obstacle is the overwhelmingly large volume of discovered patterns. This paper discusses an alternative approach called multi-tier granule mining to impr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Studies in health technology and informatics
دوره 84 Pt 2 شماره
صفحات -
تاریخ انتشار 2001